
9 Ways to 
Secure Your 

Graph



You’ve built, tested & deployed 
your graph
🎉



You’ve built, tested & deployed 
your graph

What can go wrong?
🎉



Malicious actors?



Slow or failing queries?
Malicious actors?



Slow or failing queries?
Manage public schema access?

Malicious actors?



Slow or failing queries?
Manage public schema access?
Handling deprecations safely?

Malicious actors?



Slow or failing queries?
Manage public schema access?
Handling deprecations safely?

Malicious actors?

Well-known GraphQL exploits?



a baseline for 
graph security

Let’s learn



Auth
1. Authentication 
2. Authorization

Reducing the  
attack surface  
area

Operations  
& Governance

3. Mitigating malicious queries 
4. Limiting API discoverability 
5. Batched requests

6. Stability 
7. Managing graph access 
8. Observability 
9. Monitoring



Auth
Authentication Authorization

What are you allowed to see  
and do?

You are who you say  
you are

Sessions + Identity Permissions + Capabilities



Auth
• Maintain session for a particular 

user through the use of context 

• Different ways to handle this 

• JWT 

• 3rd party (ex: Auth0)

#1. Authentication

const { ApolloServer } = require('apollo-server'); 

const server = new ApolloServer({ 
 typeDefs, 
 resolvers, 
 context: ({ req }) => { 

   // Get the user token from the headers. 
   const token = req.headers.authorization || ''; 

   // Try to retrieve a user with the token 
   const user = getUser(token); 

   // Add the user to the context 
   return { user }; 
 }, 
}); 

server.listen().then(({ url }) => { 
 console.log(`🚀 Server ready at ${url}`) 
}); 



Auth
• Authenticating within GraphQL, 

you can then use the context 
object to pass session information 
to lower layers.

#1. Authentication
const resolvers = { 
  ... 
  me: (parent, args, context) => { 
    if (!context.user) { 
     return null; 
    } 
     
    return context.models.User 
      .getById(context.user.id); 
   } 
} 



Auth
You can also: 

• Handle auth in data models 

• Use custom directives 

• Ex: type Reviews @isAuthenticated 

• Perform auth work outside of GraphQL (pass to REST endpoint) 

• Ex: Request → GraphQL → RESTful API (auth) 

• Makes sense for RESTful APIs that already have auth logic built in

#1. Authentication

apollographql.com/docs/apollo-server/security/authentication/

Key resource
Apollo Docs “Authentication and authorization“



Auth
• Do you have permission to do this? 

• Example roles:  

• `Admin`, `Editor`, `Contributor`, `Subscriber` 

• Roles have permissions/capabilities: 

• Admin → `EditPage`, `EditOthersPages`, `ReadPrivatePosts` 

• Editor → `EditPage`

#2. Authorization





Auth
• There is no single correct way to set  

up authorization 

• Custom directives  
(e.g @auth (requires: ADMIN)) 

• Wrap resolver functions 

• Put auth rules into middleware layer  
(e.g. graphql-shield) 

• Delegate to use case/application layer 

#2. Authorization
From GraphQL Summit Worldwide 2020 

Key resources
"How to Auth: Secure a GraphQL API with Confidence”  
by Mandi Wise

via the Apollo Blog 

"Setting Up Authentication and Authorization with Apollo  
Federation” by Mandi Wise

https://wordpress.org/support/article/roles-and-capabilities/
Rules and Capabilities in WordPress



Reducing the attack surface 
area



Reducing the 
attack surface area
#3. Mitigating malicious queries
→ Limit query depth

• GraphQL gives clients the ability to ask for data in  
a variety of different ways. Because of the  
various entry-points available to request data, it's  
possible to write exceptionally large nested queries. 

• Queries like this are dangerous  

• They're expensive to compute.  

• They could crash our API and take up all available  
resources.

query { 
  author(id: 42) { 
      posts { 
          author { 
              posts { 
                  author { 
                      posts { 
                          author { 
                              # and so on... 
                          } 
                      } 
                  } 
              } 
          } 
      } 
  } 
} 



Reducing the 
attack surface area
#3. Mitigating malicious queries
→ Limit query depth

• graphql-depth-limit 

• https://github.com/stems/graphql-depth-limit 

• easily limit the maximum depth of incoming queries

app.use('/api', graphqlServer({ 
  validationRules: [depthLimit(10)] 
})); 

https://github.com/stems/graphql-depth-limit


Reducing the 
attack surface area
#3. Mitigating malicious queries
→ Paginate list fields

• Query depth isn't the only thing to worry about.  
We should also be conscious of how query  
amount could affect the performance of our API. 

• Example: If there were 100 authors, each with 100  
posts, this query would attempt to return  
100,000 nodes 💀 . 

• Can slow (or DoS) your server.

query { 
  authors(first: 1000) { 
    name 
    posts(last: 100) { 
      title 
      content 
    } 
  } 
} 



Reducing the 
attack surface area
#3. Mitigating malicious queries
→ Paginate list fields

• graphql-input-number 

• https://github.com/joonhocho/graphql-input 
-number 

• Example: We can restrict the maximum value to 100 

• We can also perform these checks in the resolver 
imperatively.

const PaginationAmount = GraphQLInputInt({ 
  name: 'PaginationAmount', 
  min: 1, 
  max: 100, 
}); 

...  

type Thread { 
  messages(first: PaginationAmount,  
   after: String): [Message] 
} 

https://github.com/joonhocho/graphql-input


Reducing the 
attack surface area
#3. Mitigating malicious queries
→ Improve validation & sanitization

• Standard web application security practices.  

• When you accept data from a user,  
one should always expect that user-provided data  
could be malicious. 

• Two especially malicious techniques in this area: 

• Data exfiltration: tricks the database into  
returning more data than originally intended 

• Data destruction: destroy production data

query User { 
  user (id: "User*") { 
    email 
    id 
  } 
} 



Reducing the 
attack surface area
#3. Mitigating malicious queries
→ Improve validation & sanitization

• Follow the usual rules for web application  
sanitization in addition to the OSWAP  
GraphQL-specific recommendations like: 

• Reject invalid input without giving away too many details

https://cheatsheetseries.owasp.org/cheatsheets 
/GraphQL_Cheat_Sheet.html#general-practices

Key resource
OSWAP “GraphQL Cheat Sheet”



Reducing the 
attack surface area
#3. Mitigating malicious queries
→ Improve validation & sanitization

• Follow the usual rules for web application  
sanitization in addition to the OSWAP  
GraphQL-specific recommendations like: 

• Reject invalid input without giving away too many details 

• Leverage the GraphQL schema to support validation

https://cheatsheetseries.owasp.org/cheatsheets 
/GraphQL_Cheat_Sheet.html#general-practices

Key resource
OSWAP “GraphQL Cheat Sheet”



Reducing the 
attack surface area
#3. Mitigating malicious queries
→ Improve validation & sanitization

• Follow the usual rules for web application  
sanitization in addition to the OSWAP  
GraphQL-specific recommendations like: 

• Reject invalid input without giving away too many details 

• Leverage the GraphQL schema to support validation 

• Beware of using JSON scalars (prone to malicious queries if not  
properly sanitized)

https://cheatsheetseries.owasp.org/cheatsheets 
/GraphQL_Cheat_Sheet.html#general-practices

Key resource
OSWAP “GraphQL Cheat Sheet”



Reducing the 
attack surface area
#3. Mitigating malicious queries
→ Use timeouts

• When resolving data, there are various reasons  
why it may take a long time to respond.  

• Services could be down 

• Queries may be expensive 

• or something else might be going on.  

• We don't want our GraphQL API to hang for  
too long, waiting for a response.



Reducing the 
attack surface area
#3. Mitigating malicious queries
→ Use timeouts

• Explore using timeouts in the following contexts: 

• On resolver functions (and using REST  
data sources)  

• [Federation] On requests to the gateway's  
Node HTTP server 

• [Federation] On requests to the subgraphs  
services

// Federation gateway - subgraph timeout  
// example (credit Mandi Wise) 
const gateway = new ApolloGateway({ 
  // ... 
  buildService({ name, url }) { 
    // Sets a 3 second timeout on requests 
    // to subgraph 
    const fetcher = (input, init) => { 
      if (init) { 
        init.timeout = 3000; 
      } else { 
        init = { timeout: 3000 }; 
      } 
      return fetch(input, init); 
    }; 
    return new RemoteGraphQLDataSource({  
      url, fetcher  
    }); 
  } 
}); 



Reducing the 
attack surface area
#3. Mitigating malicious queries
→ Rate limit APIs

• Dictates how many requests a client can make  
per some time.  

• Often used to prevent brute-forcing login details,  
scraping data, or denial of service attacks.

https://docs.github.com/en/graphql/overview/ 
resource-limitations

Key resources
GitHub’s approach: “Resource limitations” based  
on maximum node limit + num requests in query

Shopify’s approach: “Query cost points”  
and the leaky bucket algorithm
https://shopify.dev/api/usage/rate-limits

graphql-rate-limit
npmjs.com/package/graphql-rate-limit



Reducing the 
attack surface area
#3. Mitigating malicious queries
→ Query cost analysis

• Despite our best efforts using query depth + 
amount limiting techniques, it's still possible to  
overload the server with semantically expensive  
queries.  

• Sometimes we can't just look at the depth or  
potential amount of nodes.

query evilQuery { 
  thread(id: "54887141-57a9-4386-807c") { 
    messageConnection(first: 100) { ... } 
    participants(first: 100) { 
      threadConnection(first: 100) { ... } 
      communityConnection { ... } 
      channelConnection { ... } 
      everything(first: 100) { ... } 
    } 
  } 
} 



import costAnalysis from  
   ‘graphql-cost-analysis' 

const costAnalyzer = costAnalysis({ 
  maximumCost: 1000, 
}) 

...

type Query { 
  # will have the default cost value 
  defaultCost: Int 

  # will have a cost of 2 because this field does not depend  
  # on its parent fields 
  customCost: Int @cost(useMultipliers: false, complexity: 2) 

  # complexity should be between 1 and 10 
  badComplexityArgument: Int @cost(complexity: 12) 

  # the cost will depend on the `limit` parameter passed to the field 
  # then the multiplier will be added to the `parent multipliers` array 
  customCostWithResolver(limit: Int): Int 
    @cost(multipliers: ["limit"], complexity: 4) 

  # for recursive cost 
  first(limit: Int): First 
    @cost(multipliers: ["limit"], useMultipliers: true, complexity: 2) 

  # you can override the cost setting defined directly on a type 
  overrideTypeCost: TypeCost @cost(complexity: 2) 
  getCostByType: TypeCost 

  # You can specify several field parameters in the `multipliers` array 
  # then the values of the corresponding parameters will be added together. 
  # here, the cost will be `parent multipliers` *  
  # (`first` + `last`) * `complexity 
  severalMultipliers(first: Int, last: Int): Int 
    @cost(multipliers: ["first", "last"]) 
} 



Reducing the 
attack surface area
#3. Mitigating malicious queries
→ Safelist operations

• During development, front-end engineers can  
explore all the data available and fetch what they  
need for the components they're building.  

• But in production, this amount of flexibility can be unnecessary  
and undesirable 

• If we know what operations we’re going to perform, can’t we make it so that 
we can only perform those?



Reducing the 
attack surface area
#3. Mitigating malicious queries
→ Safelist operations

• Catchall approach: maintain a list of approved  
operations allowed to execute against your graph 

• Operation safe listing 

• Setup 

• 1. Register your schema 

• 2. Register the operations from your client bundle 

• 3. Add the operation registry plugin to Apollo  
Server

via the Apollo Docs 

Key resources

Automatic persisted queries

via the Apollo Docs 
Operation safe listing

const server = new ApolloServer({ 
  // Existing configuration 
  typeDefs, 
  resolvers, 
  subscriptions: false, 
  // ... 
  // New configuration 
  plugins: [ 
    require('apollo-server-plugin-operation-registry')({ 
      forbidUnregisteredOperations: true, 
    }), 
  ], 
}); 



Reducing the 
attack surface area
#4. Limit API discoverability
→ Turn off introspection in production

• Introspection is for development and tooling  
purposes.  

• Behind the scenes, GraphQL IDEs are  
powered by introspection queries 

• With Apollo Server, introspection is on by default  
unless the NODE_ENV environment variable is  
set to production

const server = new ApolloServer({ 
  typeDefs, 
  resolvers, 
  introspection: process.env.NODE_ENV  
    !== 'production' 
}); 



Adapted from: https://youtu.be/NPDp7GHmMa0 

Enumerate endpoints 
and GraphQL IDEs

Introspection 
turned on?

Capture requests Parse and build 
operations Field stuffing Custom injection 

markers

Retrieve schema Parse and build 
operations

Custom injection 
markers

Make requests??? 
Yes

No

https://youtu.be/NPDp7GHmMa0


Reducing the 
attack surface area
#4. Limit API discoverability
→ Turn off introspection in production

• With introspection disabled, how do we: 

• Enable new developers to explore the current schema and its capabilities? 

• Utilize tooling during development? 

• Query production data?



READ
There should be a single source of truth for  
registering and tracking the graph

- via principledgraphql.com

Use a schema 
registry

• Similarly to how your track your source code 
with Git, a schema registry exists to keep  
track of your graph and how it changes over  
time

• Here are two ways to register your schema  
to Apollo Studio 

• 1. Through schema reporting 
•  In Apollo Server set  

APOLLO_SCHEMA_REPORTING=true 

• 2. Through the Rover CLI 
• rover graph publish 

http://principledgraphql.com


Explore the schema’s 
shape and data

Schema reference — out of the box  
documentation

Graph README — to onboard developers 
to the graph

Explorer — build queries and explore data



Explore the schema’s 
shape and data

Schema reference — out of the box  
documentation

Graph README — to onboard developers 
to the graph

Explorer — build queries and explore data



Explore the schema’s 
shape and data

Schema reference — out of the box  
documentation

Graph README — to onboard developers 
to the graph

Explorer — build queries and explore data



Reducing the 
attack surface area
#4. Limit API discoverability
→ Mask errors in production

• When server or downstream service  
errors occur, it's a good idea to withhold the exact  
specifics of what went wrong from the client. 

• Returning complete error details to the client  
exposes the current server vulnerabilities and  
opens the door for more concentrated attacks.

{ 
  "data": { 
    "astronaut": null 
  }, 
  "errors": [{ 
    "message": "Database Error: Astronaut  
      does not exist", 
    "extensions": { 
      "code": "INTERNAL_SERVER_ERROR", 
      // ... 
      "exception": { 
        “stacktrace": [ 
          "Database Error: User does not exist", 
          " at __resolveReference (../services 
 /vehicles/index.js:29:13)”, 
          // ... 
        ], 
        // … 
      } 
    } 
  }] 
} 
} 



Reducing the 
attack surface area
#4. Limit API discoverability
→ Mask errors in production

• To prevent this issue, swallow errors before they  
get to the client.  

• You can use the formatError API in Apollo  
Server to implement this.

const server = new ApolloServer({ 
  typeDefs, 
  resolvers, 
  formatError: (err) => { 
    // Don't give the specific errors to  
    // the client 
    if (err.message.startsWith('Database Error:')) { 
      return new Error( 
       'Internal server error’ 
      ); 
    } 
    // Otherwise return the original error 
    return err; 
  }, 
}); 



Reducing the 
attack surface area
#4. Limit API discoverability
→ Mask errors in production

• Errors vs. Exceptions 

• Errors → Expected and application-specific 

• UserAlreadyExists, UserDoesntExist,  
InvalidPermissions 

• Exceptions → Unexpected and infrastructural 

• Database, source code, or network connectivity 
problems 

# Application-specific errors with  
# GraphQL unions 
union UpvotePost = UpvotePostSuccess  
  | MemberNotFound 
  | PostNotFound 
  | AlreadyUpvoted 



Reducing the 
attack surface area
#4. Limit API discoverability
→ Mask errors in production

• Errors vs. Exceptions 

• Errors → Expected and application-specific 

• UserAlreadyExists, UserDoesntExist,  
InvalidPermissions 

• Exceptions → Unexpected and infrastructural 

• Database, source code, or network connectivity 
problems 

via the Apollo Docs 

Key resources
Unions and interfaces

via GraphQL Summit Worldwide 2020

200 OK! Error Handling in GraphQL by  
Sasha Solomon



Reducing the 
attack surface area
#4. Limit API discoverability
→ Avoid schema autogeneration

• Some tools can autogenerate a GraphQL schema based on database tables, etc. 

• While these tools tend to speed you up in the short run, used as your public graph,  
it becomes very easy to guess fields on the root operation types  
based on CRUD patterns. 

• Prefer a demand-oriented schema



The schema should be built incrementally  
based on actual requirements and evolve  
smoothly over time

- via principledgraphql.com

http://principledgraphql.com


Reducing the 
attack surface area

• Clients can use aliases to write batch  
queries like the following: 

• Someone may write a query like this to  
purposefully disrupt performance, 
scrape as much data as fast as possible,  
or attempt to mitigate rate-limiting. 

#5. Batched requests query MaliciousQuery { 
  alias1: fieldName { subField1 subField2 ...} 
  alias2: fieldName { subField1 subField2 ...} 
  ... 
  alias10: fieldName { subField1 subField2 ...} 
  ... 
  alias100: fieldName { subField1 subField2 ... 
  ... 
  alias1000: fieldName { subField1 subField2 ...} 
  ... 
}

→ Limit query breadth



query Mutation ( 
  $input1: LoginInput, 
  $input2: LoginInput, 
  $input3: LoginInput 
  # ... And more 
) { 
  first: login (input: $input1) { 
    token 
  } 

  second: login (input: $input2) { 
    token 
  } 

  third: login (input: $input3) { 
    token 
  } 

  # .. And so on 
} 

Brute-force attempt
Solution: Use a combination of rate-limiting 
and query complexity analysis.



Reducing the 
attack surface area

• If you're resolving data from backing data  
sources (like a REST API or a subgraph), you'll  
want to make efficient use of the network  
to prevent DoS-ing yourself.

#5. Batched requests
→ Use data loaders to prevent  
    DoS-ing yourself



Reducing the 
attack surface area

• A great technique is to use data loaders to  
minimize the number of requests to backing  
data sources from resolvers 

• Also, consider caching as an approach to  
mitigating the number of necessary requests.  
You can implement caching at various levels: 

• Client, gateway, data source, subgraph, etc

#5. Batched requests
→ Use data loaders to prevent  
    DoS-ing yourself

https://khalilstemmler.com/blogs/graphql/ 
how-apollo-rest-data-source-caches-api-calls/

Key resources

How Apollo REST Data Source 
Deduplicates and Caches API calls

https://github.com/graphql/dataloader
DataLoader

via the Apollo docs 

Using Memcached/Redis as a cache 
storage backend



Operations &  
Governance



• By design, GraphQL isn’t a versioned API.  

• In an Agile fashion, you deprecate and evolve  
fields (sometimes multiple times a day). 

• How can we do this safely? Won’t we break clients?

#6. Stability

Operations



• Schema checks 

• Operations: Will your proposed schema changes  
break any of your graph's active clients? 

• Composition: For federated graphs, will changes 
to a subgraph successfully compose with 
your other registered subgraph schemas.

#6. Stability

Operations



• Schema checks 

• Operations: Will your proposed schema changes  
break any of your graph's active clients? 

• Composition: For federated graphs, will changes 
to a subgraph successfully compose with 
your other registered subgraph schemas.

#6. Stability

Operations

The web client 
calls these 
operations frequently!

Detecting  
potentially  
broken clients



• Recommended to use in a CI with the  
Rover CLI 

• Like Jenkins or CircleCI 

• Define a CI job for each variant of your schema (production,  
staging, etc) 

•  Run `rover graph check` 

• If it returns a non-zero exit code, a breaking change has  
been detected.

#6. Stability

Operations

via Apollo docs

Key resources

Schema checks

via Apollo docs 
Rover “Getting Started” docs



• As discussed earlier, we might not want our production graph to be available to everyone 

• We turn introspection off 

• With introspection off, how do we safely manage graph access? 

• Teammates, non-developers, consultants, etc 

#7. Managing graph access

Operations



• User roles: 

• Graph admin 

• Billing manager 

• Consumer 

• Observer 

• Contributor 

• Admin 

• Org-level roles and graph-level roles

#7. Managing graph access

Operations



• User roles 

• Graph variants  
(public, private, protected) 

#7. Managing graph access

Operations



• User roles 

• Graph variants  
(public, private, protected) 

• Public readme page

#7. Managing graph access

Operations



• User roles 

• Graph variants  
(public, private, protected) 

• Public readme page 

• Embeddable explorer: public variants  
can also be embedded into your 
docs as an iframe

#7. Managing graph access

Operations



• There’s a lot going on in any production graph.  

• We need a way to keep track of what’s going on. 

• We can view our graph’s usage by the org, client,  
field, and operation level.

#8. Observability

Operations



• Know who is using your graph 

• See precisely which clients are querying  
your graph and what operations they’re  
sending.  

• Require clients to identify themselves and  
consistently name operations to enhance API  
usage understandability

#8. Observability

Operations
→ Client awareness



• You can set up tracing as well for a  
detailed breakdown of the performance 
of your resolvers

#8. Observability

Operations
→ Field-level tracing



• We can also track performance  
degradations, and error spikes 

• You can also set up alerts to be 
notified when something goes 
wrong: 

• Increase in requests per min 

• Change in p50, p95, p99 response  
time 

• Errors in operations

#9. Monitoring

Operations
→ Performance alerts



via Apollo docs

Key resources

Sending metrics to Apollo Studio

via Apollo docs 
Performance Alerts from Apollo Studio

via Apollo docs
Segmenting metrics by client

GraphQL Galaxy Conference 2020

GraphQL Observability by Ashley 
Narcisse



• Export a data file with key actions taken  
within your organization 

• Investigate an incident and see what  
actions lead up to that incident by exporting  
a log for a time period and graph 

• See what actions an individual has taken within a  
time period 

• Investigate your automated systems that are  
changing the graph

#8. Observability

Operations
→ Audit logs



In conclusion



In conclusion
We covered nine ways to secure your graph



In conclusion

Auth
1. Authentication 
2. Authorization

We covered nine ways to secure your graph



In conclusion

Auth
1. Authentication 
2. Authorization

Reducing the  
attack surface  
area
3. Mitigating malicious queries 
4. Limiting API discoverability 
5. Batched requests

We covered nine ways to secure your graph



In conclusion

Auth
1. Authentication 
2. Authorization

Reducing the  
attack surface  
area

Operations  
& Governance

3. Mitigating malicious queries 
4. Limiting API discoverability 
5. Batched requests

6. Stability 
7. Managing graph access 
8. Observability 
9. Monitoring

We covered nine ways to secure your graph



Thanks!
Chat w/ me @stemmlerjs


