¢

L]

¢

¢

¢

¢

9 Ways to
Secure Your
Graph

L

¢

L]

L

L

¢

L

¢

¢

You’ve built, tested & deployed
your graph

You’ve built, tested & deployed
your graph

What can go wrong?

Malicious actors?

Malicious actors?
Slow or failing queries?

Malicious actors?

Slow or failing queries?
Manage public schema access?

Malicious actors?

Slow or failing queries?
Manage public schema access?

Handling deprecations safely?

Malicious actors?
Slow or failing queries?
Manage public schema access?
Handling deprecations safely?
Well-known GraphQL exploits?

Let’s learn
a baseline for

graph security

Reducing the Operations

Auth attaCk SurfaCe & Governance
daléa .

1. Authentication 6. Stability

2 Authorization 3. Mitigating malicious queries 7. Managing graph access
4. Limiting API discoverability 8. Observability

5. Batched requests 9. Monitoring

Auth

Authentication Authorization
You are who you say What are you allowed to see
you are and do?

Sessions + Identity Permissions + Capabilities

const { ApolloServer } = require('apollo-server');

const server = new ApolloServer({
typeDefs,
resolvers,

context: ({ req }) => A

// Get the user token from the headers.

o Maintain session for a particular const token = req.headers.authorization || ;

user through the use of context

// Try to retrieve a user with the token

- : const user = getUser(token);
o Different ways to handle this . 9 (token)

// Add the user to the context
o JWT return { user };

e 3rd party (ex: Auth0) });

server.listen().then(({ url }) => {
console. log(4 Server ready at ${url}’)

F);

Auth

const resolvers = {

me: (parent, args, context) => {
if (!'context.user) {

e Authenticating within GraphQL, return null:

you can then use the context 1
object to pass session information

to lower layers. return context.models.User

.getById(context.user.id);
¥

Auth

You can also:

Key resource
e« Handle auth in data models Apollo Docs “Authentication and authorization*
apollographqgl.com/docs/apollo-server/security/authentication/
o Use custom directives

o EX:type Reviews @isAuthenticated
o Perform auth work outside of GraphQL (pass to REST endpoint)
o Ex: Request-> GraphQL > RESTful API (auth)

o Makes sense for RESTful APIs that already have auth logic built in

Auth

e Do you have permission to do this?
e Exampleroles:
e Admin , Editor , Contributor , Subscriber
o Roles have permissions/capabilities:
e Admin - EditPage , EditOthersPages , ReadPrivatePosts

o Editor> EditPage’

Inside of or

rules

Custom

irectives > | [Lrma] > Hmm] [] |

A u t h Key resources

"How to Auth: Secure a GraphQL APl with Confidence”
by Mandi Wise

e Thereis no single correct way to set From GraphQL Summit Worldwide 2020
up authorization

""Setting Up Authentication and Authorization with Apollo

e Custom directives Federation” by Mandi Wise
(e.g @auth (requires: ADMIN)) via the Apollo Blog
« Wrap resolver functions Rules and Capabilities in WordPress

https://wordpress.org/support/article/roles-and-capabilities/
e Putauth rulesinto middleware layer

(e.g. graphgl-shield)

e Delegate to use case/application layer

Reducing the attack surface
area

Reducing the e) 1
attack surface area PO thor 4

posts {
author {
posts {
author A
e GraphQL gives clients the ability to ask for data in \ # and so on...
a variety of different ways. Because of the 1
various entry-points available to request data, it's , }

possible to write exceptionally large nested queries.

e Queries like this are dangerous \
e They're expensive to compute.

e They could crash our APl and take up all available
resources.

Reducing the
attack surface area

app.use('/api', graphglServer({
validationRules: [depthLimit(10)]

e graphgl-depth-limit 1)) -

e https://github.com/stems/graphgl-depth-limit

e easily limitthe maximum depth of incoming queries

https://github.com/stems/graphql-depth-limit

Reducing the
attack surface area

query A
authors(first: 1000) {

posts(last: 100) {

title
e Querydepthisn't the only thing to worry about. content

We should also be conscious of how query }
amount could affect the performance of our API. \ b

o Example: If there were 100 authors, each with 100
posts, this query would attempt to return
100,000 nodes == .

e Can slow (or DoS) your server.

Reducing the
attack surface area nane: tpaginationAnaunt’s

min: 1,
max: 100,
)
e graphgl-input-number
e https://github.com/joonhocho/graphgl-input type 1
_number messages(first: :
after:) |

¥

e Example: We can restrict the maximum value to 100

o« We can also perform these checks in the resolver
imperatively.

https://github.com/joonhocho/graphql-input

Reducing the
attack surface area

query User 1
user (id: "Userx") {
emall
id
I3

Standard web application security practices.

When you accept data from a user,
one should always expect that user-provided data
could be malicious.

}

Two especially malicious techniques in this area:

o Data exfiltration: tricks the database into
returning more data than originally intended

e Data destruction: destroy production data

Reducing the
attack surface area

Key resource
OSWAP “GraphQL Cheat Sheet”

o https://cheatsheetseries.owasp.org/cheatsheets
» Follow the usual rules for web application /GraphQL_Cheat_Sheet.html#general-practices
sanitization in addition to the OSWAP

GraphQL-specific recommendations like:

e Rejectinvalid input without giving away too many details

Reducing the
attack surface area

Key resource
OSWAP “GraphQL Cheat Sheet”

o https://cheatsheetseries.owasp.org/cheatsheets
» Follow the usual rules for web application /GraphQL_Cheat_Sheet.html#general-practices
sanitization in addition to the OSWAP

GraphQL-specific recommendations like:

e Rejectinvalid input without giving away too many details

e Leverage the GraphQL schema to support validation

Reducing the
attack surface area

Key resource
OSWAP “GraphQL Cheat Sheet”

o https://cheatsheetseries.owasp.org/cheatsheets
» Follow the usual rules for web application /GraphQL_Cheat_Sheet.html#general-practices
sanitization in addition to the OSWAP

GraphQL-specific recommendations like:

e Rejectinvalid input without giving away too many details

e Leverage the GraphQL schema to support validation

e Beware of using JSON scalars (prone to malicious queries if not
properly sanitized)

Reducing the
attack surface area

e When resolving data, there are various reasons
why it may take a long time to respond.

e Services could be down
e Queries may be expensive
e or something else might be going on.

e« Wedon't want our GraphQL API to hang for
too long, waiting for a response.

Request start

. waiti ng.

Reducing the
attack surface area

e Explore using timeouts in the following contexts:

e Onresolver functions (and using REST
data sources)

o [Federation] On requests to the gateway's
Node HTTP server

o [Federation] On requests to the subgraphs
services

// Federation gateway - subgraph timeout
// example (credit Mandi Wise)
const gateway = new ApolloGateway({
I oo
buildService({ name, url }) {
// Sets a 3 second timeout on requests
// to subgraph
const fetcher = (input, init) => {
if (init) A
init.timeout = 3000,
} else {
init = { timeout: 3000 };
}

return fetch(input, init);
i
return new RemoteGraphQLDataSource({
url, fetcher

Reducing the
attack surface area ey resources

GitHub’s approach: “Resource limitations” based
on maximum node limit + num requests in query

https://docs.github.com/en/graphqgl/overview/
resource-limitations

e Dictates how many requests a client can make Shopify’s approach: “Query cost points”
per some time. and the leaky bucket algorithm

https://shopify.dev/api/usage/rate-limits

o Often used to prevent brute-forcing login details,

scraping data, or denial of service attacks. graphql-rate-limit
npmjs.com/package/graphql-rate-limit

Reducing the
attack surface area

query evilQuery {
thread(id: "54887141-57a9-4386-807c") {
messageConnection(first: 100) { ... }
participants(first: 100) {
threadConnection(first: 100) { ... }

e Despite our best efforts using query depth + communityConnection { «on 1t
amount limiting techniques, it's still possible to channelConnection { ... }
. . : everything(first: 100) { ... }
overload the server with semantically expensive 1

queries. }

e Sometimes we can't just look at the depth or
potential amount of nodes.

import costAnalysis from
‘graphql-cost—-analysis’

const costAnalyzer =

})

maximumCost:

1000,

costAnalysis({

type Query {

will have the default cost value
defaultCost: Int

will have a cost of 2 because this field does not depend
on 1ts parent fields
customCost: Int @cost(useMultipliers: false, complexity: 2)

complexity should be between 1 and 10
badComplexityArgument: Int @cost(complexity: 12)

the cost will depend on the limit parameter passed to the field
then the multiplier will be added to the parent multipliers array
customCostWithResolver(limit: Int): Int

@cost(multipliers: ["1imit"], complexity: 4)

for recursive cost
first(limit: Int): First
@cost(multipliers: ["limit"], useMultipliers: true, complexity: 2)

you can override the cost setting defined directly on a type
overrideTypeCost: TypeCost @cost(complexity: 2)
getCostByType: TypeCost

You can specify several field parameters in the multipliers array
then the values of the corresponding parameters will be added together.
here, the cost will be parent multipliers x
(first + "last’) x complexity
severalMultipliers(first: Int, last: Int): Int
@cost(multipliers: ["first", "last"])

Reducing the
attack surface area

e During development, front-end engineers can
explore all the data available and fetch what they
need for the components they're building.

e Butin production, this amount of flexibility can be unnecessary
and undesirable

o If we know what operations we’re going to perform, can’t we make it so that
we can only perform those?

Reducing the
attaCk Su rfa Ce area const server = new ApolloServer({

// Existing configuration
typeDefts,

resolvers,

subscriptions: false,

[/ -
// New configuration

e Catchall approach: maintain a list of approved plugins: [

operations allowed to execute against your graph require(‘apollo-server—-plugin-operation-registry') (1
forbidUnregisteredOperations: true,

e Operation safe listing 1,

o Setup

e 1. Register your schema

e 2.Register the operations from your client bundle

e 3.Add the operation registry plugin to Apollo
Server

Reducing the
attack surface area

const server = new ApolloServer({

typeDefts,
resolvers,
e Introspection is for development and tooling introspection: process.env.NODE_ENV
== "production
purposes. 1) »

e Behind the scenes, GraphQL IDEs are
powered by introspection queries

o With Apollo Server, introspection is on by default
unless the NODE_ENV environment variable is
set to production

Enumerate endpoints Introspection

and GraphQL IDEs AR @y Make requests

Adapted from: https://youtu.be/NPDp7GHmMmMa0

https://youtu.be/NPDp7GHmMa0

Reducing the
attack surface area

e With introspection disabled, how do we:
o Enable new developers to explore the current schema and its capabilities?
o Utilize tooling during development?

e Query production data?

Use a schema
registry

e Here are two ways to register your schema
to Apollo Studio

There should be a single source of truth for

registering and tracking the graph o 1.Through schema reporting

e InApollo Server set
APOLLO_SCHEMA_REPORTING=true

- via principledgraphqgl.com

o Similarly to how your track your source code
with Git, a schema registry exists to keep o 2.Through the Rover CLI
track of your graph and how it changes over e rover graph publish

time

http://principledgraphql.com

Explore the schema’s
shape and data

Explore the schema’s
shape and data

L l’i_\/ Schema | space-explorer@cur X

< C

My Nanoleaf [khalilstemmler.com [Git

& studio.apollographqgl.com

Schema

+

B React

@ space-explorer / current ~

o APl schema
nttp: graph-manager-dem
Gh
it i1 ES }
_/\/
C,
v
type Mission
size:
enum PatchSize
SMALL

LARGE

type Rocket

B Node

SDL

B AwS

9 Software Design

™ css

»

v @ @ g »

9 Other Bookmarks Reading List

< @

Update Schema

Explore the schema’s
shape and data

0 &

M

@ <

<

acephel/ current

acephei@current FEDERATED

https://acephei-gateway herokuapp.com 15

Mar 29, 2021 T:18PM PDTY b‘.' GitHub « 162300

README

Welcome to Acephei!

Welcome to a GraphQL API! & Get familiar with available objects in the Schema Reference, or try querying this graph using Ex

This is the default README content, You can customize it however you like, Graph Maintainers, you can edit to include any information that is

relevant for developers working with this graph by clicking the pencil icon in the top right corner.

What this graph is all about

Describe the purpose and use cases for your graph here. This is where you can tell the story of your API, and all of it's deep magic.... 2 [l

Accessing the graph
W You can send operations to this graph at https://acephei-gateway.herokuapp.com

&= The Apollo Registry holds the cannonical location of your schema. In the registry, this graph is referred to by its “graph ref”, which is:

acephei@current

(NOte: you con dow { Rover, the Apofio CLJ tool for working with your schema locelly.)

How to authenticate to this graph

Avithansisstlon lafovesstion har aat hasa saddad sa thile NEANIILC st NDa viwsataladiinive A dovslannve hssuibhacta sivhaatlonta nad .l

b

PPN

46

2 Runin Explorer

Links

Changelog

Product

reviews

The README i3 2 now feature. W
0 .. foadback

"data": 1

RedUCing the }"'astronaut": null
attack surface area

"errors": [{
"message’: "Database Error: Astronaut
does not exist",
"extensions": {
""code": "INTERNAL_SERVER_ ERROR",
[/ «un
"exception'": {
. “stacktrace": |
o When server or downstream service "Database Error: User does not exist",
errors occur, it's a good idea to withhold the exact " at __resolveReference (../services

specifics of what went wrong from the client. /VEhldesﬁ”dex']5:29:13)7,

Returning complete error details to the client 7am
exposes the current server vulnerabilities and y b
opens the door for more concentrated attacks. 1]

S adhn

Reducing the
attack surface area

const server = new ApolloServer({
typeDefs,
resolvers,
formatError: (err) => {
// Don't give the specific errors to
// the client
if (err.message.startsWith('Database Error:')) A

. return new (
e To preventthisissue, swallow errors before they N ey

get to the client. }) ;

// Otherwise return the original error

e You can use the formatError APl in Apollo _
return err;

Server to implement this. },
F);

Reducing the
attack surface area

Application—-specific errors with
GraphQL unions
union =

e Errorsvs. Exceptions

o Errors - Expected and application-specific

o UserAlreadyExists, UserDoesntExist,
InvalidPermissions

e Exceptions > Unexpected and infrastructural

e Database, source code, or network connectivity
problems

Reducing the
attack surface area

Key resources
« Errors vs. Exceptions Unions and interfaces

via the Apollo Docs

o Errors - Expected and application-specific
200 OK! Error Handling in GraphQL by

o UserAlreadyExists, UserDoesntExist, Sasha Solomon
InvalidPermissions via GraphQL Summit Worldwide 2020

e Exceptions > Unexpected and infrastructural

e Database, source code, or network connectivity
oroblems

Reducing the
attack surface area

e Some tools can autogenerate a GraphQL schema based on database tables, etc.

o While these tools tend to speed you up in the short run, used as your public graph,

it becomes very easy to guess fields on the root operation types
based on CRUD patterns.

Prefer a demand-oriented schema

The schema should be built incrementally
based on actual requirements and evolve
smoothly over time

- via principledgraphgl.com

http://principledgraphql.com

Reducing the
attack surface area

query MaliciousQuery A
aliasl: fieldName { subFieldl subField2 ...}
alias2: fieldName { subFieldl subField2 ...}

. . . aliasl10: fieldName { subFieldl subField2 ...}
e Clients can use aliases to write batch

queries like the following: aliasl100: fieldName { subFieldl subField2 ...

e Someone may write a query like this to alias1000: fieldName { subFieldl subField2 ...}

purposefully disrupt performance,) .
scrape as much data as fast as possible,
or attempt to mitigate rate-limiting.

query Mutation (
$inputl: LoginInput,
$input2: LoginInput,
$input3: LoginInput
... And more

) 1
first: login (input: $inputl) A
token
} \\\\\\\
second: login (input: $input2) { Brute-force attempt
tok
1 oREn Solution: Use a combination of rate-limiting

and query complexity analysis.
third: login (input: $input3) {
token
}

.. And so on

}

Reducing the

attaCk Su rlace area UsersServ:.ce
\‘f/////;7‘ Express Js REST API
V1ny1 Service
e]
React Ap Slnatra REST API
eac
p IIHEEEHH!HHHHHHHII

Apollo Client
_ Apollo Server RESTDataSource N
RESTDataSource

Billing Service

Express.js REST API

o Ifyou'reresolving data from backing data
sources (like a REST APl or a subgraph), you'll —
want to make efficient use of the network

to prevent DoS-ing yourself.

Reducing the
attack surface area

Key resources

DatalLoader
https://github.com/graphqgl/dataloader

How Apollo REST Data Source
Deduplicates and Caches API calls

o A .gr.eat. technique is to use data loaders tc? https://khalilstemmler.com/blogs/graphql/
minimize the number of requests to backing how-apollo-rest-data-source-caches-api-calls/

data sources from resolvers

Using Memcached/Redis as a cache

e Also, consider caching as an approach to storage backend
mitigating the number of necessary requests. via the Apollo docs

You can implement caching at various levels:

o Client, gateway, data source, subgraph, etc

Operations &
Governance

Operations

e By design, GraphQL isn’t a versioned API.

e Inan Agile fashion, you deprecate and evolve
fields (sometimes multiple times a day).

e« How can we do this safely? Won’t we break clients?

® .
Operations
p @ accounts « Initiated a month ago.

@ Composition

Operations
e Schema checks 9

e Operations: Will your proposed schema changes

, . . .
break any of your graph's active clients: B o

« Composition: For federated graphs, will changes (D accounts « Initiated a month ago.
to a subgraph successfully compose with @) Ccomposition
your other registered subgraph schemas.

@ Operations 6 Affected Operations

@ Check for “‘main’ vs ‘dev-davi X -4 (v

@ studio.apollographql.com/graph/acephei/operationsCheck/5140d81d-ab0b-4d8d-bb71-1eefc6fe050c?query=6f123bf571... @& v¢ N ® @ &2 » ‘

acephei/ prod v

& Recent Checks
BROKEN OPERATION

Affected operations (4)
e 6112 web_Meldentity

BROKEN OPERATIONS 0

main

: : View operation bod
- X 5280 dios_MyReviews p y

David added commit aeff13 on Dec 18, web_MeTIdentity Dete Cti n g

2020 at 5:13 PM EST. IMPACTING CHANGES

||
Rerun check X bae2 1os_Meldentity User objecttype modified pOtentlaIIy

— name: String field removed

jos_TopProducts bro ken CI ients

REQUEST RATE (RPM) FROM 15 DEC 10:13 PM - 18 DEC 10:13 PM

View configuration

View change details

]
Co
A
O
Vv

TASK 278.4

max

Build The web client
Operations Ca”S these
operations frequently!

TIMEFRAME CHECKED

Dec 15, 2020 at 5:13 PM EST — Dec 18. .. USED BY CLIENT EB1T IN CONFIGURATION

web
AFFECTED OPERATIONS

4 affected operations out of 7 checked
USED BY VARIANT EDIT IN CONFIGURATION

CHANGES acephei / production

— 1 deletion

-+ 3 additions

O p e rati 0 n S Key resources

Rover “Getting Started” docs

via Apollo docs
e Recommended to use in a Cl with the

Schema checks
Rover CLI .
via Apollo docs
e Like Jenkins or CircleCl

e Define a Cljob for each variant of your schema (production,
staging, etc)

e Run rover graph check

o Ifitreturns anon-zero exit code, a breaking change has
peen detected.

Operations

o Asdiscussed earlier, we might not want our production graph to be available to everyone
e We turn introspection off
o With introspection off, how do we safely manage graph access?

e Teammates, non-developers, consultants, etc

(A) Settings | space-explorer@cur X =+ &

C @ studio.apollographql.com/graph/apollographql-8341/settings/access?variant=current % B ® @ & » ‘ :

Operations

(>) -

@ space-explorer/ current v

Settl n gS General Notifications Access

e Userroles: gy Cotin Costar Consumer | »
. Ay Caydie Tran Ohsarver) a

e Graph admin 8 ;
‘? DannyDev Consumer - &

e Billing manager
2 o Observer - 4

Chris Shaw A
Observer - =

e Consumer

2 < @ < 0 0 =B K B

L Obse rver “C‘: Dan Boerner Observer - 5
ﬁ matt debergalis or .) o)
. g Admin o
o Contributor |
M Dbeccaapollo Observer) fal
e Admin
~< e i~ e i e s e N

o Org-level roles and graph-level roles

Operations

#7. Managing graph access

e Userroles

e Graph variants
(public, private, protected)

Variants

NAME

production

staging

public-api

PROTECTED (3)

oFf (D
oFf (D
oFf (D

PUBLIC (3)

ofFf (D
ofFf (D
oN @D

O O (A) Home | GitHub@current | Stud X + (v]

C' @& studio.apollographgl.com/public/github/home?variant=current w N ® @ @ » ‘

o You are viewing the preview of the public facing view of this variant. Go back to private view.

github / current | PUBLIC

Operations

@ github@current
¥ https://api.github.com/graphql .
) PRITEPLE Brapnd 1108 4_936 > Runin Explorer
) Oct1,2021 at 3:00 AM EDT « 797175 types fields
README Updated 15 days ago Links

@ Official GitHub Documentation

&J Welcome to the GitHub GraphQL APl & ChangeLog ore >
e Userroles

This is a full portal to querying the GitHub API. The Studio Changelog looks for October 1, 3:00 am edt +1
updates in the GitHub schema once a day. If you need any information you can't find Topic
here, you can read the official GitHub documentation for this API.

o G ra p 1 Va ria nts + repositories

Authentication

(p U b [I C, p rl Vate ’ p rOte Cted) To authenticate requests in the Explorer, generate a new personal auth token from

https://github.com/settings/tokens with the following scopes: o The README is a new feature. We would

love to hear your feedback! §

e Public readme page user (a1l

repo
repo:status
repo_deployment
public_repo
admin:org
read:org

Add your user token as a header in the Explorer like so:

Authorization: bearer <TOKEN>

~ i~ TG 5 i P S > i r—— o i g e e a4

Operations

e Userroles

e Graphvariants
(public, private, protected)

e Public readme page

e Embeddable explorer: public variants

can also be embedded into your
docs as an iframe

@POLLO DOCS

Studio

Features
Get started

Managed federation

X COLLAPSE ALL
WORKING WITH GRAPHS
Graphs and variants
Explorer & Sandbox
Embedded Explorer
Development graphs

Federated graphs

REGISTERING SCHEMAS

Using schema reporting
Using the Rover CLI

Protocol reference (advanced)

METRICS REPORTING

Setup

Segmenting by client

O O @ Embedding the Explorer - Stu

& C @ apollographgl.com/docs/studio/embed-explorer/

Q

* @O0 @ »@ :

Launch Apollo Studio =

If you have a public variant of your graph, you can embed the Apollo Studio Explorer

in a webpage that you can then provide to your graph's consumers. This enables

those consumers to test out operations from your own website.

For example, here's an embedded Explorer for an Apollo example graph. Try it out!

» Operations -+

1 query GetLaunches {

launches {
launches {
id
site
rocket {
id
name
}
}
}
}

Variables Headers Environment Varizc

> GetLaunches

Explorer's appearance to suit the page it's on.

Response = [

"data": {
"launches": {
"launches": [
{
"id": "109",
"site": "CCAFS
SLC 40",
"rocket": {
"id":
"falcon9",
"name" :

"Falcon 9"

}

I

{
l|1'dH: HlOSll,
"site": "VAFB

SLC 4E",

This embedded Explorer collapses its left column by default because the full three-

column layout is a little cramped on this page. You can customize the embedded

Operations

e There’s alot going on in any production graph.
e We need a way to keep track of what’s going on.

o We canview our graph’s usage by the org, client,
field, and operation level.

Operations

e« Know who is using your graph

e See precisely which clients are querying
your graph and what operations they’re
sending.

e Require clients to identify themselves and
consistently name operations to enhance API
usage understandability

O @ Clients | acephei@production

C @ studio.apollographqgl.com/graph/acephei/clients?clientName=ios&clientReferenc

Example Co.: acephei/ production v | FEDERATED

Clients

All versions <0.1% errors

x +

90.7k

108k

120.4k

130.6k

139.1k

85% 5887k S

0%

0%
0%

0% >

eld=ios

&variant=production

All Operations

ID

c46e

bae2

5280

ios_TopProducts

Operation Name

ios_Meldentity

ios_ eviews

(O Lastday v

Requests v Errors
214.5k <0.01%
191.6k
182.7k <0.01%

—_—— ——— —

Operations

e You can set up tracing as well for a
detailed breakdown of the performance
of your resolvers

®

.

(®
o
®

© s & 0

<

»

® @ Operations | acephei@product X +

&

o

@ studio.apollographql.com/graph/acephei/operations?query=d6556f034c1e77c6435b48a5ec0e35a28d9ec46e&queryName=ios_TopProducts&... &8 ¢ » ‘@ :

Example Co.:

Operations

acephei / production v

Performance

Execution

Resolvers

jos_TopProducts

service:products
service:books
service:products
service:reviews
service:accounts
_entities: [_Entity]!
_entities.0
_entities.5
_entities.4
_entities.1
_entities.3
_entities.2

service:accounts

FEDERATED

Errors

Traces Operation

Timing

22.8ms

25.1ms

68.7ms

118ms

<1lms

<1lms

<1lms

<1lms

<1lms

<1lms

86.2ms

® <@

O Lastday v Cpios v c46e ios_TopProducts v

7 ~ —

g

© (A) Operations | space-explorer@: X 4 O

C @ studio.apollographql.com/graph/apollographqgl-8341/operations?variant=current P ¢ B ® @ 2 *» ’

©)) space-explorer/ current v

(a
Pk
[>]
o
- T —
A
C
v
08

(® Lastday v Cp Allclients (4) v All operations v

Operations

Performance Errors

Operations

Last day overview

Request Rate p95 Service Time Error Percentage

311 21.1 18.34
24 hour median 24 hour median 24 hour median

Range: 0.013rpm - 0.089rpm Range: 14.7ms - 44.1ms Range: 18.26% - 19.95%
-0.02 7% since yesterday -42.62 % since yesterday +0.24 75 since yesterday

o« We can also track performance

Highest Request Rate Slowest p95 Service Time Highest Error Percentage
d eg ra d atl O n S, a n d e rro r S p I keS 10c1 LaunchDetails 77 a2d3 GetLaunchList 199.7 3fd2 mutation cancel(Slaunchld:ID!){canc... @ 100
7d9b login @) 60 7d9b login @ 24.2 9339 BookTrips (@) 0.04
a2d3 GetLaunchList 57 7a67 GetLaunchs 24 7d9b login (@ 0.04
o YO U Ca n a ISO Set u p a le rtS tO be 9339 BookTrips () 57 9339 BookTrips () 18.2

3fd2 mutation cancel($Slaunchld:ID!){canc... @ 57 10c1 LaunchDetails 4.3

notified when something goes
wrong:

Request rate over time (RPM)

e Increase in requests per min p—

. Change n ps0, p95, p99 response . -

3:00pm 6:00pm 9:00pm Oct 20th 3:00am 6:00am 9:00am 12:00pm

time

Request latency over time

e ~< T ~ e —— T ——— o e e T ———— i

e Errorsinoperations

®)

@ @ Operations | acephei@produc: X +

c

@& studio.apollographgl.com/graph/acephei/operations?query=d6556f034c1e77c6435b48a5ec0e35a28d9ec46e&queryName=ios_TopProducts&tab=... % %» ‘@ :

Example Co.:

Operations Performance

1

max

acephei/ production v | FEDERATED

® <@

© Lastday v Chios v c46e ios_TopProducts v

Errors Traces Operation
Error count over time
® Errors
3:00pm 6:00pm 9:00pm May 17th 3:00am 6:00am 9:00am
v 3 operations failed outside the GraphQL context

request to https://acephei-reviews.herokuapp.com/ failed, reason: connect ETIMEDOUT 54.159.116.102:443

v 2 instances of this error
TIME OPERATION TRACE
May 16, 2021 at 5:45 PM MDT c46e ios_TopProducts 12301
May 17,2021 at 4:57 AM MDT c46e ios_TopProducts ed3e5a

Request Rate (rpm)

12:00pm

Key resources

Performance Alerts from Apollo Studio
via Apollo docs

Sending metrics to Apollo Studio
via Apollo docs

Segmenting metrics by client
via Apollo docs

GraphQL Observability by Ashley
Narcisse
GraphQL Galaxy Conference 2020

Operations

o Export a data file with key actions taken
within your organization

e Investigate an incident and see what
actions lead up to that incident by exporting
a log for a time period and graph

e See what actions an individual has taken within a
time period

e Investigate your automated systems that are
changing the graph

Create an Audit Log export for tmm = = mm

We will email a link of your audit log tc | when it's ready
and it will be available to download for 30 days.

Time range

The time parameters set here will be interpreted in UTC time. Use max time range.

From To

07/28/2021, 08:00 PM ™ 07/29/2021, 05:09 PM 5

o Audit logs can only be exported back to Jul 28,2021 at 8:00 PM PDT

Filter

Export a full audit of all actions in Apollo (Internal), or filter the log by actions from a specific user or

on a specific graph.

User:

Graph:

o If you have any questions or need an audit export with a custom filter applied, please
contact support. We will be happy to process a manual audit export for you.

In conclusion

In conclusion

We covered nine ways to secure your graph

In conclusion

We covered nine ways to secure your graph

Auth

1. Authentication
2. Authorization

In conclusion

We covered nine ways to secure your graph

Reducing the
Auth attack surface
1. Authentication area

2. Authorization 3. Mitigating malicious queries

4. Limiting API discoverability
5. Batched requests

In conclusion

We covered nine ways to secure your graph

Reducing the Operations
attack surface & Governance

Auth

daléa "

1. Authentication 6. Stability

2 Authorization 3. Mitigating malicious queries 7. Managing graph access
4. Limiting API discoverability 8. Observability

5. Batched requests 9. Monitoring

Thanks!

Chat w/ me @stemmlerjs

